TensorFlow Lite toolbox support
ST Edge AI Core Technology 2.2.0
Overview
This document lists the layers (or operators) which can be imported and converted. Supported operators allow to address a large range of classical topologies targeting a Mobile or IoT resource-constrained runtime environment: SqueezeNet, MobileNet V1 or V2, Inception, SSD MobileNet v1,..
Purpose of this document is to list the operators and their associated constraints or limitations, please refer to the original documentation for details on a given layer.
Tensorflow Lite is
the format used to deploy a neural network model on mobile
platforms. ST Edge AI Core imports and converts the
.tflite
files which is based on the flatbuffer
technology. The official ‘schema.fbs
’ definition (tags
v2.18.0
) is used to import the models. A number of
operators from the supported
operator list are handled, including the quantized models and/or
operators generated by the Quantization Aware Training or/and
Post-training quantization processes.
This file was automatically generated.
- ST Edge AI Core version : 2.2
- 101 operators found
Summary table
Following table contains the list of the operators that can be imported, if the constraints or limitations are met.
- supported optional fused activation (or non-linearity): gelu,
linear, relu, quantized_relu, relu_n1_to_1, relu_0_to_1, leaky_relu,
relu6, elu, selu, sigmoid, hard_sigmoid, hard_swish, exponential,
tanh, softmax, softplus, softsign, abs, acos, acosh, asin, asinh,
atan, atanh, ceil, clip, cos, cosh, erf, flexerf, exp, floor,
identity, log, logistic, neg, logical_not, prelu, probit,
reciprocal, relu_generic, relu_thresholded, round, sign, sin, sinh,
softmax_zero, sqrt, swish, tan
- supported optional fused integer activation (or
non-linearity): prelu, relu, clip, lut, swish, identity, relu6
- mixed data operations (i.e hybrid operator) are not natively
supported, activations and weights should be quantized
- if an operator is not supported in integer, floating point version is used. Converters are automatically added by the code generator.
operator | data types | constraints/limitations |
---|---|---|
ABS | float32 | common |
ADD | float32, int8, uint8 | common |
ARG_MAX | float32, int32 | common |
ARG_MIN | float32, int32 | common |
ATAN2 | float32 | common |
AVERAGE_POOL_2D | float32, int8, uint8 | common, specific |
BATCH_MATMUL | float32, int8, uint8 | common, specific |
BATCH_TO_SPACE_ND | float32, int8, uint8 | common |
BROADCAST_ARGS | float32, int8, uint8, int32 | common |
BROADCAST_TO | float32, int8, uint8 | common, specific |
CAST | bool, int8, uint8, float32 | common, specific |
CEIL | float32 | common |
CONCATENATION | float32, int8, uint8 | common, specific |
CONV_2D | float32, int8, uint8 | common, specific |
COS | float32 | common |
DEPTH_TO_SPACE | float32, int8, uint8 | common, specific |
DEPTHWISE_CONV_2D | float32, int8, uint8 | common, specific |
DEQUANTIZE | float32, int8, uint8 | common |
DIV | float32, int8, uint8 | common |
ELU | float32, int8, uint8 | common |
EQUAL | float32, bool | common |
EXP | float32 | common |
EXPAND_DIMS | float32, int8, uint8 | common |
FILL | float32 | common |
FlexErf | float32 | common |
FLOOR | float32 | common |
FLOOR_DIV | float32 | common |
FLOOR_MOD | float32 | common |
FULLY_CONNECTED | float32, int8, uint8 | common, specific |
GATHER | float32, int8, uint8 | common, specific |
GATHER_ND | float32, int8, uint8 | common, specific |
GELU | float32 | common |
GREATER | float32, bool | common |
GREATER_EQUAL | float32, bool | common |
HARD_SWISH | float32 | common |
L2_NORMALIZATION | float32 | common |
LEAKY_RELU | float32, int8, uint8 | common |
LESS | float32, bool | common |
LESS_EQUAL | float32, bool | common |
LOCAL_RESPONSE_NORMALIZATION | float32 | common |
LOG | float32 | common |
LOG_SOFTMAX | float32 | common, specific |
LOGICAL_AND | bool | common |
LOGICAL_NOT | float32 | common |
LOGICAL_OR | bool | common |
LOGISTIC | float32 | common |
MAX_POOL_2D | float32, int8, uint8 | common, specific |
MAXIMUM | float32, int8, uint8 | common |
MEAN | float32 | common |
MINIMUM | float32, int8, uint8 | common |
MIRROR_PAD | float32 | common, specific |
MUL | float32, int8, uint8 | common |
NEG | float32 | common |
NOT_EQUAL | float32 | common |
PACK | float32, int8, uint8 | common, specific |
PAD | float32 | common, specific |
PADV2 | float32 | common, specific |
POW | float32 | common |
PRELU | float32, int8, uint8 | common |
QUANTIZE | float32, int8, uint8 | common |
REDUCE_ANY | float32 | common |
REDUCE_MAX | float32 | common |
REDUCE_MIN | float32 | common |
REDUCE_PROD | float32 | common |
RELU | float32, int8, uint8 | common |
RELU6 | float32, int8, uint8 | common |
RELU_0_TO_1 | float32, int8, uint8 | common |
RELU_N1_TO_1 | float32, int8, uint8 | common |
RESHAPE | float32, int8, uint8 | common |
RESIZE_BILINEAR | float32 | common |
RESIZE_NEAREST_NEIGHBOR | float32 | common |
REVERSE_V2 | float32, int8, uint8 | common, specific |
ROUND | float32 | common |
RSQRT | float32 | common |
SCATTER_ND | float32, int8, uint8 | common, specific |
SELECT | float32, int8, uint8, int16, uint16, int32, uint32, bool | common |
SELECT_V2 | float32, int8, uint8, int16, uint16, int32, uint32, bool | common |
SHAPE | float32, int8, uint8, int32 | common |
SIGN | float32 | common |
SIN | float32 | common |
SLICE | float32, int8, uint8 | common |
SOFTMAX | float32 | common, specific |
SPACE_TO_BATCH_ND | float32, int8, uint8 | common |
SPACE_TO_DEPTH | float32, int8, uint8 | common |
SPLIT | float32, int8, uint8 | common, specific |
SPLIT_V | float32, int8, uint8 | common, specific |
SQRT | float32 | common |
SQUARE | float32 | common |
SQUARED_DIFFERENCE | float32 | common |
SQUEEZE | float32, int8, uint8 | common |
STRIDED_SLICE | float32, int8, uint8 | common |
SUB | float32, int8, uint8 | common |
SUM | float32 | common |
TANH | float32 | common |
TILE | float32, int8, uint8 | common, specific |
TOPK_V2 | float32, int8, uint8 | common |
TRANSPOSE | float32, int8, uint8 | common, specific |
TRANSPOSE_CONV | float32, int8, uint8 | common, specific |
UNIDIRECTIONAL_SEQUENCE_LSTM | float32, int8 | common, specific |
UNPACK | float32, int8, uint8 | common |
ZEROS_LIKE | float32 | common |
Common constraints
- input and output tensors must be not dynamic.
- variable-length batch dimension (i.e.
(None,)
) is considered as equal to 1
- must not be greater than 6D
- dimension must be in the range
[0, 65536[
- batch dimension is partially supported in the axis/axes
parameters
- variable-length batch dimension (i.e.
- data type for the weights/activations tensors must be:
- float32, int8, uint8
- only int32 for the bias tensor is considered
- for some operators, bool and binary types are also
supported
- float32, int8, uint8
- 1D operator is mapped on the respective 2D operator by adding a singleton dimension on the input: (12,3) -> (12, 1, 3)
Operators
ABS
Applies an activation function to the input tensor
- category: activation layer
- input data types: float32
- output data types: float32
ADD
Performs element-wise operation
- category: eltwise operator
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
ARG_MAX
Computes the indices of the max elements of the input tensor’s element along the provided axis.
- category: generic layer
- input data types: float32
- output data types: int32
ARG_MIN
Computes the indices of the min elements of the input tensor’s element along the provided axis.
- category: generic layer
- input data types: float32
- output data types: int32
ATAN2
Performs element-wise operation
- category: eltwise operator
- input data types: float32
- output data types: float32
AVERAGE_POOL_2D
Downsamples the input
- category: pooling layer
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
Specific constraints/recommendations:
- arbitrary strides, provided that they are smaller than the input
size
- arbitrary pool sizes, provided that they are smaller than the input size
BATCH_MATMUL
Fully Connected operation
- category: core layer
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
- fused activations (if present): gelu, linear, relu,
quantized_relu, relu_n1_to_1, relu_0_to_1, leaky_relu, relu6, elu,
selu, sigmoid, hard_sigmoid, hard_swish, exponential, tanh, softmax,
softplus, softsign
- integer schemes: weights / activations
- Signed Symmetric / Signed Asymmetric (SSSA)
- Signed Symmetric per channel (or per-axis) / Signed Asymmetric
(SSSA_CH)
- Signed Symmetric / Unsigned Asymmetric (SSUA)
- Signed Symmetric per channel (or per-axis) / Unsigned Asymmetric (SSUA_CH)
- Signed Symmetric / Signed Asymmetric (SSSA)
Specific constraints/recommendations:
- Only up to 3D matrix multiplication is supported
BATCH_TO_SPACE_ND
Reshape the batch dimension of a tensor
- category: Reshaping operation
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
BROADCAST_ARGS
Returns a tensor containing the shape of the input tensor
- category: Reshaping operation
- input data types: float32, int8, uint8
- output data types: int32
BROADCAST_TO
Constructs a tensor by tiling the input tensor
- category: reshaping layer
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
Specific constraints/recommendations:
- tiling on batch-dimension is not supported
CAST
Cast elements of the input tensor to the specified output tensor data
- category: conversion layer
- input data types: bool, int8, uint8, float32
- output data types: bool, int8, uint8, float32
Specific constraints/recommendations:
- The attribute saturate different from the default value is not supported
CEIL
Applies an activation function to the input tensor
- category: activation layer
- input data types: float32
- output data types: float32
CONCATENATION
Performs concatenation of a list of inputs
- category: merge operator
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
- fused activations (if present): gelu, linear, relu, quantized_relu, relu_n1_to_1, relu_0_to_1, leaky_relu, relu6, elu, selu, sigmoid, hard_sigmoid, hard_swish, exponential, tanh, softmax, softplus, softsign
Specific constraints/recommendations:
- concatenating on the batch dimension is not supported
CONV_2D
Performs convolution operation
- category: convolutional layer
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
- fused activations (if present): gelu, linear, relu,
quantized_relu, relu_n1_to_1, relu_0_to_1, leaky_relu, relu6, elu,
selu, sigmoid, hard_sigmoid, hard_swish, exponential, tanh, softmax,
softplus, softsign
- integer schemes: weights / activations
- Signed Symmetric / Signed Asymmetric (SSSA)
- Signed Symmetric per channel (or per-axis) / Signed Asymmetric
(SSSA_CH)
- Signed Symmetric / Unsigned Asymmetric (SSUA)
- Signed Symmetric per channel (or per-axis) / Unsigned Asymmetric (SSUA_CH)
- Signed Symmetric / Signed Asymmetric (SSSA)
Specific constraints/recommendations:
- arbitrary strides, provided that they are smaller than the input
size
- arbitrary filter kernel sizes, provided that they are smaller
than the input size
- dilation factors different from 1 are not supported for int8 model
COS
Applies an activation function to the input tensor
- category: activation layer
- input data types: float32
- output data types: float32
DEPTH_TO_SPACE
Permutes the dimensions of the input according to a given pattern
- category: reshaping layer
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
Specific constraints/recommendations:
- transposing the batch dimension is not supported
DEPTHWISE_CONV_2D
Performs convolution operation
- category: convolutional layer
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
- fused activations (if present): gelu, linear, relu,
quantized_relu, relu_n1_to_1, relu_0_to_1, leaky_relu, relu6, elu,
selu, sigmoid, hard_sigmoid, hard_swish, exponential, tanh, softmax,
softplus, softsign
- integer schemes: weights / activations
- Signed Symmetric / Signed Asymmetric (SSSA)
- Signed Symmetric per channel (or per-axis) / Signed Asymmetric
(SSSA_CH)
- Signed Symmetric / Unsigned Asymmetric (SSUA)
- Signed Symmetric per channel (or per-axis) / Unsigned Asymmetric (SSUA_CH)
- Signed Symmetric / Signed Asymmetric (SSSA)
Specific constraints/recommendations:
- arbitrary strides, provided that they are smaller than the input
size
- arbitrary filter kernel sizes, provided that they are smaller
than the input size
- dilation factors different from 1 are not supported for int8 model
DEQUANTIZE
Computes element-wise data conversion low precision to full precision, based on the scale/zeropoint parameters
- category: conversion layer
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
DIV
Performs element-wise operation
- category: eltwise operator
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
ELU
Applies an activation function to the input tensor
- category: activation layer
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
EQUAL
Performs logical element-wise operation
- category: eltwise operator
- input data types: float32
- output data types: bool
EXP
Applies an activation function to the input tensor
- category: activation layer
- input data types: float32
- output data types: float32
EXPAND_DIMS
Reshapes a tensor
- category: Reshaping operation
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
FILL
Generates a tensor with given value and shape
- category: constant layer
- input data types: float32
- output data types: float32
FlexErf
Applies an activation function to the input tensor
- category: activation layer
- input data types: float32
- output data types: float32
FLOOR
Applies an activation function to the input tensor
- category: activation layer
- input data types: float32
- output data types: float32
FLOOR_DIV
Performs element-wise operation
- category: eltwise operator
- input data types: float32
- output data types: float32
FLOOR_MOD
Performs element-wise operation
- category: eltwise operator
- input data types: float32
- output data types: float32
FULLY_CONNECTED
Fully Connected operation
- category: core layer
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
- fused activations (if present): gelu, linear, relu,
quantized_relu, relu_n1_to_1, relu_0_to_1, leaky_relu, relu6, elu,
selu, sigmoid, hard_sigmoid, hard_swish, exponential, tanh, softmax,
softplus, softsign
- integer schemes: weights / activations
- Signed Symmetric / Signed Asymmetric (SSSA)
- Signed Symmetric per channel (or per-axis) / Signed Asymmetric
(SSSA_CH)
- Signed Symmetric / Unsigned Asymmetric (SSUA)
- Signed Symmetric per channel (or per-axis) / Unsigned Asymmetric (SSUA_CH)
- Signed Symmetric / Signed Asymmetric (SSSA)
Specific constraints/recommendations:
- Only up to 3D matrix multiplication is supported
GATHER
Gathers values along a specified axis
- category: activation function
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
Specific constraints/recommendations:
- Gather is not supported with indices dimensions > 2 (Batch is not considered), axis > 3and axis = 0, batch_dims attribute is not handled
GATHER_ND
Gathers slices from input tensor into an output tensor with shape specified by indices
- category: activation function
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
Specific constraints/recommendations:
- Batch_dims attribute is not handled. 4D or more indices (BATCH is not included) are not implementedLast dimension of indices > 4 with 2D inputs tensor case is not handled
GELU
Applies an activation function to the input tensor
- category: activation layer
- input data types: float32
- output data types: float32
GREATER
Performs logical element-wise operation
- category: eltwise operator
- input data types: float32
- output data types: bool
GREATER_EQUAL
Performs logical element-wise operation
- category: eltwise operator
- input data types: float32
- output data types: bool
HARD_SWISH
Applies an activation function to the input tensor
- category: activation layer
- input data types: float32
- output data types: float32
L2_NORMALIZATION
Apply Lp-normalization along the provided axis
- category: normalization function
- input data types: float32
- output data types: float32
LEAKY_RELU
Applies an activation function to the input tensor
- category: activation layer
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
LESS
Performs logical element-wise operation
- category: eltwise operator
- input data types: float32
- output data types: bool
LESS_EQUAL
Performs logical element-wise operation
- category: eltwise operator
- input data types: float32
- output data types: bool
LOCAL_RESPONSE_NORMALIZATION
Apply Local Response Normalization over local input regions
- category: normalization function
- input data types: float32
- output data types: float32
LOG
Applies an activation function to the input tensor
- category: activation layer
- input data types: float32
- output data types: float32
LOG_SOFTMAX
Applies an activation function to the input tensor
- category: activation layer
- input data types: float32
- output data types: float32
Specific constraints/recommendations:
- It is supported only for 1D tensor and only on the channel dimension
LOGICAL_AND
Performs boolean element-wise operation
- category: eltwise operator
- input data types: bool
- output data types: bool
LOGICAL_NOT
Applies an activation function to the input tensor
- category: activation layer
- input data types: float32
- output data types: float32
LOGICAL_OR
Performs boolean element-wise operation
- category: eltwise operator
- input data types: bool
- output data types: bool
LOGISTIC
Applies an activation function to the input tensor
- category: activation layer
- input data types: float32
- output data types: float32
MAX_POOL_2D
Downsamples the input
- category: pooling layer
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
Specific constraints/recommendations:
- arbitrary strides, provided that they are smaller than the input
size
- arbitrary pool sizes, provided that they are smaller than the input size
MAXIMUM
Computes the maximum (element-wise) a list of inputs
- category: eltwise operator
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
MEAN
Computes the Mean of the input tensor’s element along the provided axes
- category: reduction operation
- input data types: float32
- output data types: float32
MINIMUM
Computes the minimum (element-wise) a list of inputs
- category: eltwise operator
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
MIRROR_PAD
Pads an input tensor
- category: Reshaping layer
- input data types: float32
- output data types: float32
Specific constraints/recommendations:
- padding ‘edge’ is not supported
MUL
Performs element-wise operation
- category: eltwise operator
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
NEG
Applies an activation function to the input tensor
- category: activation layer
- input data types: float32
- output data types: float32
NOT_EQUAL
Performs element-wise operation
- category: eltwise operator
- input data types: float32
- output data types: float32
PACK
Packs a list of tensors into a tensor along a specified axis
- category: merge operator
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
Specific constraints/recommendations:
- related TF operator: tf.stack
PAD
Pads an input tensor
- category: Reshaping layer
- input data types: float32
- output data types: float32
Specific constraints/recommendations:
- padding ‘edge’ is not supported
PADV2
Pads an input tensor
- category: Reshaping layer
- input data types: float32
- output data types: float32
Specific constraints/recommendations:
- padding ‘edge’ is not supported
POW
Performs element-wise operation
- category: eltwise operator
- input data types: float32
- output data types: float32
PRELU
Applies an activation function to the input tensor
- category: activation layer
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
QUANTIZE
Computes element-wise data conversion full precision to low precision, based on the scale/zeropoint parameters
- category: conversion layer
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
REDUCE_ANY
Computes the logical ‘or’ of elements across dimensions of a tensor
- category: reduction operation
- input data types: float32
- output data types: float32
REDUCE_MAX
Computes the Max of the input tensor’s element along the provided axes
- category: reduction operation
- input data types: float32
- output data types: float32
REDUCE_MIN
Computes the Min of the input tensor’s element along the provided axes
- category: reduction operation
- input data types: float32
- output data types: float32
REDUCE_PROD
Computes the Product of the input tensor’s element along the provided axes
- category: reduction operation
- input data types: float32
- output data types: float32
RELU
Applies an activation function to the input tensor
- category: activation layer
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
RELU6
Applies an activation function to the input tensor
- category: activation layer
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
RELU_0_TO_1
Applies an activation function to the input tensor
- category: activation layer
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
RELU_N1_TO_1
Applies an activation function to the input tensor
- category: activation layer
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
RESHAPE
Reshapes a tensor
- category: Reshaping operation
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
RESIZE_BILINEAR
Resize input tensor using bilinear interpolation
- category: resizing operation
- input data types: float32
- output data types: float32
RESIZE_NEAREST_NEIGHBOR
Resize input tensor using nearest interpolation mode
- category: resizing operation
- input data types: float32
- output data types: float32
REVERSE_V2
Reverses specific dimensions of a tensor
- category: Reshape layer
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
Specific constraints/recommendations:
- reversing the batch dimension is not supported
- support more than 1 axis is not supported
ROUND
Applies an activation function to the input tensor
- category: activation layer
- input data types: float32
- output data types: float32
RSQRT
Applies an activation function to the input tensor
- category: activation layer
- input data types: float32
- output data types: float32
SCATTER_ND
Scatters updates into a tensor of shape equal to shape attribute according indices (TFLite),The output of the ScatterND layer is produced by creating a copy of the input data, and then updating its values to values specified by updates at specific index positions specified by indices (ONNX)
- category: activation function
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
Specific constraints/recommendations:
- 5D or more indices (BATCH is not included) are not implemented, 5D or more data (BATCH is not included) are not implemented
SELECT
Where layer
- category: generic layer
- input data types: float32, int8, uint8, int16, uint16, int32,
uint32, bool
- output data types: float32, int8, uint8, int16, uint16, int32, uint32, bool
SELECT_V2
Where layer
- category: generic layer
- input data types: float32, int8, uint8, int16, uint16, int32,
uint32, bool
- output data types: float32, int8, uint8, int16, uint16, int32, uint32, bool
SHAPE
Returns a tensor containing the shape of the input tensor
- category: Reshaping operation
- input data types: float32, int8, uint8
- output data types: int32
SIGN
Applies an activation function to the input tensor
- category: activation layer
- input data types: float32
- output data types: float32
SIN
Applies an activation function to the input tensor
- category: activation layer
- input data types: float32
- output data types: float32
SLICE
Crops the input
- category: reshaping layer
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
SOFTMAX
Applies an activation function to the input tensor
- category: activation layer
- input data types: float32
- output data types: float32
Specific constraints/recommendations:
- It is supported only for 1D tensor and only on the channel dimension
SPACE_TO_BATCH_ND
Divides spatial dimensions
- category: Reshaping operation
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
SPACE_TO_DEPTH
Rearranges blocks of spatial data into depth
- category: reshaping layer
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
SPLIT
Splits a tensor into a list of sub tensors
- category: split operator
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
Specific constraints/recommendations:
- Only supported if the number of splits is equal to the size of the splitting dimension
SPLIT_V
Splits a tensor into a list of sub tensors
- category: split operator
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
Specific constraints/recommendations:
- Only supported if the number of splits is equal to the size of the splitting dimension
SQRT
Applies an activation function to the input tensor
- category: activation layer
- input data types: float32
- output data types: float32
SQUARE
Applies an activation function to the input tensor
- category: activation layer
- input data types: float32
- output data types: float32
SQUARED_DIFFERENCE
Compute (x-y)(x-y)
- category: eltwise operator
- input data types: float32
- output data types: float32
SQUEEZE
Reshapes a tensor
- category: Reshaping operation
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
STRIDED_SLICE
Crops the input
- category: reshaping layer
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
SUB
Performs element-wise operation
- category: eltwise operator
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
SUM
Computes the Sum of the input tensor’s element along the provided axes
- category: reduction operation
- input data types: float32
- output data types: float32
TANH
Applies an activation function to the input tensor
- category: activation layer
- input data types: float32
- output data types: float32
TILE
Constructs a tensor by tiling the input tensor
- category: reshaping layer
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
Specific constraints/recommendations:
- tiling on batch-dimension is not supported
TOPK_V2
Retrieve the top-K largest or smallest elements along a specified axis
- category: topK operator
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
TRANSPOSE
Permutes the dimensions of the input according to a given pattern
- category: reshaping layer
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
Specific constraints/recommendations:
- transposing the batch dimension is not supported
TRANSPOSE_CONV
Transposed convolutional layer
- category: convolutional layer
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
Specific constraints/recommendations:
- arbitrary strides, provided that they are smaller than the input
size
- arbitrary filter kernel sizes, provided that they are smaller than the input size
UNIDIRECTIONAL_SEQUENCE_LSTM
Computes a multi-layer long short-term memory (LSTM) RNN to an input sequence (batch=1, timesteps, features)
- category: recurrent layer
- input data types: float32, int8
- output data types: float32, int8
Specific constraints/recommendations:
- stateless mode support only
- fused activation: sigmoid
- fused recurrent activation: sigmoid
return_state
not supported
time_major
not supported
UNPACK
Unpacks num tensors from values along specified axis
- category: split operator
- input data types: float32, int8, uint8
- output data types: float32, int8, uint8
ZEROS_LIKE
Generates a tensor with values 0
- category: zeros like
- input data types: float32
- output data types: float32